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THE BRANCHING OF EQUILIBRIUM STATES 

OF AN ISOLATED ROTATING LIQUID MASS* 

L.A. SLOBOZHANIN 

Branching of solutions of the nonlinear problem of equilibrium of a rotating free 
mass of liquid possessing surface tension is investigated (expediency of such invest- 
igation was pointed out in /1,2/). It is shown that a two-parameter set of nonaxi- 
symmetric states passes through the critical (inthe senseofstability) axisymmetric 
equilibrium state. Form of the nonaxisymmetric equilibrium figures is analyzed,and 
properties of branching determined. The latter are used for assessing the stability 
of these figures. 

1. Let us consider the simply connected forms of the free surface of a rotatingisolated 
mass of viscous liquid held together by surface tension forces in the absence of an external 

force field. In cylindrical coordinates F, ‘p,z the form r (s),z (s)of the axisymmetric equilibrium 
surface r is defined /3-5/ by the following differential equations, initial conditions, and 
the state of the given volume of liquid: 

r" = -.#p', ze zz r'@', ft' = -pr2 i_ p - z'!r (p = PrnZ/(Z~~} 

F (0) = 0, r’ (0) = 1, Z (0) = 20, 2’ (0) = 0 

7 

2nI r2 (s; q) z,’ (s; q) ds = v 
0 

where s is the length of arc measured from the upper pole along cross section cp = const of 
surface r, p (s)is the angle of inclination to the horizontal of the tangent at pointsof that 
cross section, o is the angular velocity of uniform rotation, p, CT are the density and coef- 
ficient of surface tension of the liquid, zg is the displacement (unimportant for the form) 
along the axis of rotation z, chosen on the basis of the condition of symmetry of the figure 

relative to plane z = 0 (Fig-l), and the before-hand unknown 

"! 
quantity q (the doubled mean curvature at the pole) is determined 

% 

by the liquid mass volume U, and a is the value of s at the equa- 

i T‘---- 
torial point. 

The axisynrnetric figure form is uniquely determined by the 

20 j R ntr\\ 
quantity a = qp-‘” and, as shown by calculations, if ris to be 

R 'c \ P simply connected, it is necessary that a <u+ = 1.263. As a in- 

/ 
creases, parameter Y = Up first increasesfromzero (when a = -co) 

/ to Y0 = 9.543 (for a = 0.70) , and then decreases to v+ = 8.378 (when 
r / 

--- -0’ 01 = a+ ). In the section of increasing v , a = Ocorresponds to 

Y+- Thus to each v <v+ corresponds one axisymmetric equili- 

Fig.1 
brium figure (a <O) , while two figures correspond to Y+ <V <vg 
which for v =vO merge into one (cz -= 0.70). When v>vtl there are 
no simply connected axisymmetric figures. 

On the other hand it is physically more natural to take as the parameter defining equili- 
brium not v, but the quantity a= ~2/(pov',*), where p = 10 is the moment of momentum of the 
liquid about the axis of rotation and I is the respective moment of inertia. It was shown 
in /2/ that as a increases from-onto a+ , parameter h monotonically increases from zero to 
5.672. 

2. To define the nonaxisymmetric simply connected equilibrium surface we shall first 
establish the correspondence between its points and the points on the axisymmetric surface l? 
along the normal to the latter (Fig-l), i.e. 

R, (s, (P) = R (s> (P) + n (s, m)N (s, tp) (2.1) 
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K (s. (c) ir (s) cos cp ~; ,jr (s) sin CP kz (s) 

n (s, TJ) -iz' (s) cos CP - jz' (s) sin p kr’ (s) 

The differential equation of such surface is of the form 

2/f (I^. r’. z’, B’, 11’. N,‘, A’,‘, A’.,<“, N,,,“, N,,“) --prl? -1. q, (2.2) 

r1 ~~~ r ~ 2 A ‘Y 

The doubled curvature 2H is determined using the known formulas /6/ with (2.1) taken 

into account. 

Function IV (s, (p) must satisfy besides EQ.(2.2) the condition of conservation of the 
volume of liquid and that of immobility of the center of mass 

and, also, to be bounded and 2n-periodic in ‘p . 

3. The axisymmetric figures are stable for p <p* = 5.253~~ /4,5/ (the shown value of 

(I.+ is that corrected in the course of calculations carried out below). The form of the 

critical axisymmetric surface is determined by q m: p0 = -0.907p,'l~. Let us investigate the 

problem of form of the equilibrium surfaces for values of parameter p close to critical. We 

select as the standard of comparison of I'the axisymmetric critical surfaceand, inconformity 
with /5/ set 

1' =- I'* --_ e" (s ; 0) 
1%. -= &JV, (s, CP) I E”:Ve (s, cp) -I .( q = qo -km Eql i e’q, -I-... 

(3.1) 

(the validity of these expansions can be strictly proved in the investigation of the problem 

by the Liapunov-Schmidt method /5,7/I. 

Substituting (3.1) into (2.2) and (2.3) and equating coefficients at like powers of C, 

we obtain a sequence of problems in ATi (s, CF). Theproblems for N, and IV,, and the equation 

for N, are 

(3.2) 

(3.3) 
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where the integrals are taken over surface I?. 

4. Problem (3.2) is the same as the problem of the form of normal component of danger- 
ous perturbations on the critical surface of I'. Identifying all solutions obtained fromone 
another by turning about the z axis, we obtain /4,5/ 

N1=Q1u(s)sin2m, yl=O (a"2 +a'-(a-tm-$)u=O) (4.1) 

where Q, is the unknown constant that is to be determined, U(S) is the solution of the 
equation appearing in parentheses and bounded at the singular points r = 0 (when ,F = 0 and 
s = 2r ) . It is symmetric relative to the straight line 8 = r(u(s) = U(2r-~)) , and in the 
zero neighborhood can be represented by the series 

We pass to the 

It can be 

u(s)=~~S~+(~I)*y”+~qO~)s~$...~~J~’~ 23040 

problem for Nz. Taking into account (4.1), we represent Eq.(3.3) in the form 

LN, = fz, fi = Q12F, (4 + Q12F, (4 cos 49 T r2 + qz 

F,(s)=($+$L~-F(S), Fd(s)=(-- +$)uz+F(s) 

F(s) = +- ($ + /3’” + p/j u2 + r’ ($ - per) uu’ - + (4 _ fir) uf2 + vuun 

readily checked that the orthogonality condition 

S fzNl dr = 0 
r 

is necessary and sufficient for the solvability of that equation. 
For deriving the solution we introduce the operators 

1 an 
p&z= 2n 

s Nz(s, cp)& 
0 

22 

PkNz = + [sin kcp 1 Nz (s, cp) sin kq dcp + 

caskrva~N~(s.ry)aosk~drF, (k,,l) 

and obtain 

P,L = L,P,, 

Hence by acting with operators P, on (3.3) we obtain the equations 

Representing N, in the form of the Fourier series 

and taking into account the form of function fi(s, cp), we obtain 

Nz = 5 P,N, 
n=o 

Nz = Q12a (s) + gs (s) + cm (9 + Q12a 6) ~0s 4~ + QZU (4 sin 2~ (4.2) 
where Qz is an arbitrary constant and g,(s)(j = 1,2,3,4) are solutions bounded at singular 
points r=O of equations 

L,g, = F,, L&z = r*, Log, = 1, La = F, (4.3) 

which we represent in the form 

gi (S) = Ci% (S) + bi (S) (i = 1, 2, 3)~ g, (S) = C&d (S)+ b, (S) (4.4) 
C, = -bi’ (z)/u,’ (T), C, = -b,’ (z)&’ (z) 

where b, (S) (i = 1, 2, 3, 4), uo (4, ~4 (4 are the respective solutions of Eqs.(4.3), bounded when 
s=o, and Lou0 = 0, L,u, = 0. In the neighborhood of s= 0 they are of the form 

01 (s) = uo (s) p; '/I 
1 

, bz (s) = u,, (s) p;“” _t x s4 
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and are accurate within terms of order 9. 
Note that U,,‘(‘C) and u,'(z) are nonzero, Since otherwise thecritical from the stability 

point of view would have been perturbations in fourth harmonics or axisymmetric perturbations, 
and not in second harmonics, as in fact is the case. 

The symmetry of r relative to the equatorial plane, and the form of operators I,,, L, 
and functions F, (s), F*(S) 
& (2T - 8) holds 

imply that for the derived equations gj(s) the equality Ri (IsI = 
. !lence these solutions are bounded not only when s = 0 but, also, for s = 27. 

The firstofconditions (3.4) results in the relation (the remaining conditions of (3.4) 
are automatically satisfied) 

(4.5) 

Let us pass to Eq.33.5) which we now write in the form IX, =f3. The condition of its 
solvability 

S f&‘l dr = 0 
f 

with (4.1), (4.21, (4.4), and (4.51 yields the equality 

Qt2 (Q12B -t_ A) = 0 (4.61 

2r2z’u2 - D2 E] ds 

Neglecting the solution Q1 = 0, which relates to the axisymmetric form of equilibrium 
when p is close to JI*, from Eq.(4.6) we obtain 

(Qdr = -1Qd.z = &A/B)‘,% (4.7) 

For calculating d and Bwe shall use everywhere dimensionless variables selecting the 
quantity p;'l' as the characteristic dimension of length. We retain the old notation fox the 
new variables, since all previous relations remain valid by setting in them p*= 1. The equa- 
tions that determine the meridian cross section form r(q = 17~ = -0.907) was numerically 
calculated for s in steps of 10-4, together with the determination of functions u(s), U,(S), 
U*(S), bj(s) (I'= 1,2,3,4), followed by the determination of A and B. As the result we obtained 
4 = --1.660, B = ---1X13. 

It follows now from (4.7) that the lower sign is to be taken at the A/B ratioandother 



325 

similar places. Hence in conformity with the first of formulas (3.1) no branched-off nonaxi- 
symmetric figures can exist when p<p*. 

Recalling the possibility of turning about the z axis, we conclude that a two-parameter 

set of nonaxisymmetric states positioned at p<p* and invariant to turns about the z axis 

pass through the critical axisymmetric equilibrium state. Deviation of the free surface form 

of the nonaxisymmetric from the critical surface form on the normal to the latter is deter- 
mined in the first approximation by the dimensional quantity 

N = 0.946 (p* - p)‘bpP;““u (sp;i’) sin 2 (cp -!- const) (4.8) 

in which the dependence of the dimensionless value of u on t =sp*‘J* is tabulated below 00 = 

TP *“$ 

if* : 01 50 0.2 199 0.3 448 0.4 795 1240 0.5 i%l 2407 0.7 3% 

!OfU 3884 0.9 '1.0 4694 5%3 6% 7007 1.3 7585 1.4 7988 1.5 8i80 1.6 to= 1.63i 8194 

The form of the critical axisymmetric equilibrium figure (bifurcation figure) can be 
determined using elliptic integrals /2,5/ or numerically. 

The two parameters Y (or P, since volume v is a given quantity) and h each of which 
defines the equilibrium state (the additional parameter that determines the turn of nonaxi- 
symmetric figures about the z axis is immaterial) were already mentioned in Sect.1. The 
equilibrium state can be considered to be the fixed point of functional lJ,= 0.X -&I/2 or U,= 

OZ + pV(2I) (his the area of the liquid free surface); depending on this, either p or h appear 
in a natural way. The first functional is applied in investigations of relative equilibrium 
of nonconservative system which maintain a constant angular velocity of rotation also in 
perturbed motion. The second one is used in investigations of steady motionsofafreesystem, 
when the moment of momentum relative to the axis of rotation is constant /8/. The considered 
here system is free, hence h is to be taken as the characteristic parameter. 

In the above reasoning p was taken as the parameter. This was done not only for conven- 
ience. Data obtained in terms of P together with those below enable us to carry out full 
comparison with conclusions of the theory of equilibrium figures of equilibrium of a rotating 
self-gravitating liquid, related to the properties of Jacobi's ellipsoids and their differ- 
ence from the set of Maclaurin ellipsoids /9/. 

Let us pass from p to h. We represent 1\. in the form 

h = 2pTav-‘f~, T = ~r2dP 
P 

where B is the region occupied by the liquid. The increment of ?, toward its critical value 

h* on nonaxisymmetric figures is 

Ah = 2~-"~ {P* [2T,AT + (AT)7 + Ap [T,2 + BT,AT + (AT)‘]) 

AP=P-~a, AT= 
S[ 

Nr2 - + NV (32’ + q3’) f 

N8z’ (z’ + q3’) - + ;z’l[,f+38’) ++N9$+ 

where T, is the value of T for the bifurcation figure. 
Taking into account (3.1), (4.1), (4.2), and (4.5) we obtain 

AT =94n 
SI QI” [Cm + h + DI (Cm + 63) - 
0 

As the result of calculations we obtained r* = 3.142p;““, h, = 0.412, AT = 3.672~2’9 + 
0 (es), hence 

Ail = -0.55OAp/p, + 0 (E3) (4.9) 

The fixed points of functionals Urand Uz, as well as the critical axisymmetric equili- 
brium states /4,5/, coincide. Hence for determining the form of the branched-off figures it 
is sufficient to substitute in (4.8) the obtained in (4.9) quantity L818p,(h- h,) for p*-p. 

We shall judge the stability of the branched-off figures by the pattern of their branch- 
ing inconformitywith the Poincarg-Schwarzschild reasoning /9/. A set of axisymmetric figur- 
es exists onboth sides of h,, with h<h,rcorresponding to stable states. Branched-off 
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figures exist when Ap<O, hence according to (4.9) we have Ak>O. Thus branching is direct- 
ed toward h > A, where axisymmetric states are unstable. This implies that in the neiyhbor- 
hood of h, the nonaxisymmetric figures (as well as the bifurcation figure) are stable. This 
means that only nonaxisymmetric figures of equilibrium may be observed when J_; h, and (pi 

/I.* = 4.443 r/@p;y. 
Note that in stability investigations a correct selection of the parameter which defines 

equilibrium is particularly important. In the case of a nonconservative system with pas the 

determining parameter, from the pattern of branching would follow the conclusion of instab- 

ility of branched-off figures in the neighborhood of p,. 
The results of this investigation together with previous studies of axisymmetric equili- 

brium forms (including ring-shaped /lo/) and of their stability show a remarkable similarity 

of behavior of equilibrium figures of a rotating liquid with surface tension and of a rotat- 

ing self-gravitating liquid /9/. 

The author thanks N.S. Shcherbakov for carrying out calculations and A.D. Tiuntsev for 

discussions. 
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